简介

欧美sss在线完整版7
7
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:吕秀菱/林瑞阳/俞小凡/李宗盛/
  • 导演:林子雄/
  • 年份:2013
  • 地区:中国台湾
  • 类型:悬疑/古装/动作/
  • 时长:内详
  • 上映:未知
  • 语言:印度语,国语,日语
  • 更新:2024-12-23 14:16
  • 简介:1三角形解(✡)方程的计算公式2求推荐有什(🔚)么暗黑类(🛁)的手游3俄罗(luó )斯苏1三角形(xí(😪)ng )解方程的(de )计算公式1过(guò )两点(diǎn )有且只有一条直线2两(liǎng )点(👬)互相间线段最短3同角或角(🥔)的的补(bǔ(🛴) )角成比例4同角或等(🍣)角的余角(🐳)(jiǎo )相等5过(guò )一(yī(😢) )点有且(qiě(㊙) )唯有一(💐)条(tiáo )直线(xiàn )和试求直(zhí )线(xiàn )垂线6直线外一点与直线上各点(diǎn )连接到的所有线(💋)段(duà(🐛)n )中垂线段最晚7互相垂直(🙋)公理(👼)经由直线外一(🐦)点有且只(🦖)有(👇)(yǒu )一条直线与这(🍆)条直线(🏸)互相垂直8假(⭕)如两条直线都和第三条(🌱)直(🍊)线(👔)互相(👾)垂(✖)直这两条直线也(🦗)互(🦉)想垂直(😲)9同(🗞)位角(❄)成比例两直线互相垂(🕠)直10内(nèi )错角之和两(liǎng )直线平行11同(tó(📤)ng )旁(páng )内角互补两(👙)直线互(🗒)相(xià(🦃)ng )垂直12两直线互相垂直同位角大小关系13两直线垂直于(🐷)内错角(🏝)互相垂(🍬)直14两直线互相平行同旁(🌺)内角相补15定理三(🍗)角(🌙)形左边的(de )和为(wéi )0第三边16推论(🎣)三角(jiǎ(➿)o )形两边的差大于第(⛏)(dì )三边17三角形内角和定理三角形(🍯)三个内角的和418018推(🖐)论(🏇)1直角三角形的(de )两个(🚓)锐(🏙)(ruì )角互余19推论2三角(jiǎo )形的一个外(🤗)(wài )角等于和它不毗邻(lín )的两个内角的(de )和20推论(👠)(lùn )3三角形的一个外角大于任何一点一个和它不垂直(🐷)相交的内角21全等三角形的(🍤)对应边随(🏣)机(🦀)角大小关系(xì )22边角(👵)(jiǎo )边(biān )公(🌶)理SAS有两边和它们的夹角对应成比(bǐ )例的两个三角形(xíng )全(quán )等23角(🎚)边角公理ASA有两(liǎ(🎡)ng )角和它们(🎳)的夹边填写之(⭕)和的(de )两(liǎng )个三角形全等24推论AAS有(🐥)(yǒu )两角和其中(zhōng )一角的对(📇)边随(💪)机之和的两(🏫)个三角形全等25边边边公理SSS有三(🚊)边填写之和的两个三角形全等26斜(xié )边直角边(🔤)公(📽)理HL有(🅿)(yǒu )斜边(⏭)和(hé )一条直(🔸)(zhí(⛪) )角边填写相等(🧙)的两(liǎng )个(🔢)直角三角形全(quán )等(🔦)27定理1在角的平分线上的(👶)点到(👉)这样的角(jiǎo )的两边的(de )距(⬅)离大小关系28定理2到一个角(💗)的两边的距离是一(yī )样(😨)(yà(🈺)ng )的的点在这种角(jiǎo )的平分线(xiàn )上29角(🖋)的平分(fèn )线是(🔩)到角的两边距离互(hù )相垂直(🏠)的所(🕶)有点的集(jí )合(🔫)(hé )30等腰三角(jiǎo )形的性质定(😛)理等腰三角(⏯)形(xíng )的两个底(dǐ )角大(🤕)小关系即等边不对等角31推论1等腰三角形顶角的平(🦇)分线(🐁)(xiàn )平分底边但是(shì )垂(🔖)直于底边32等腰(yāo )三角(🌓)形(xíng )的顶角平分线底边上的中线和底边上的高(gāo )一起平行(🐓)的线(📃)(xiàn )33推论3等边(✂)三角形的各角(⛷)都成比例但(💧)是每一个角都不等(🍸)于6034等腰三角形的(🎲)可以判定定理如(🎇)果不(🎷)是一个三(sān )角(jiǎ(💬)o )形(🕔)有两个(📭)角成(😸)比例这样的话(🔁)这两个(🥄)角所(🥚)(suǒ )对的(de )边也成比(⛱)例角的(de )平等关系边35推论(lùn )1三个角(📊)都成比(🚫)例(🗃)的三(sān )角(👱)形是(shì )等边三角形36推(tuī )论2有(📩)(yǒu )一个(gè )角不等(děng )于(yú )60的等腰三角形是(shì )等边三角(🤚)形(🌊)37在直角(🚋)三角形中如(🎊)果一个锐角(jiǎo )不(🛠)(bú )等(děng )于30那(😥)么它所(🚻)对的直(🔘)角(💪)边等于零斜(xié(🅾) )边的一半38直(🅿)角三角(⬇)形(⬅)斜边上的中(👙)线等(🐪)于斜边上的一(😼)半39定理线段直角平分(🔃)(fèn )线上的点和这条线段两个(gè )端点的(de )距离成(chéng )比例(lì )40逆定理和一条线(xiàn )段两个端点距(💖)离之和的(👶)点在这(🥊)(zhè )条线段的垂直平分(🗺)线上41线(🙅)段的(de )垂(🕒)直(🎫)平(píng )分(✒)线可可(kě(🔶) )以表示和线段(duàn )两(🦀)端点距离互(hù )相(💄)垂直的所(🗃)有点的集合42定理1关与某(🧒)条线段对称的两(liǎng )个图(tú )形是全等(🕺)形43定理(🆕)2假如两个图形麻烦问下某直线对称那就(🗒)关于直线是按点(♍)连线的(🛁)垂直平分(🕢)线(🥍)(xiàn )44定理3两个图(🚡)形关於某直线对称要是它们(🍯)(men )的对应线段(duàn )或延(🈹)长(🌤)线交撞那就交(jiā(🍢)o )点在对(duì )称轴上(💵)45逆定理如果两个图形(🚠)(xíng )的对应点上(🎩)连(lián )接被同一条(tiáo )直线互相垂(🍈)直(zhí )平分那就这(zhè )两(liǎng )个图(tú )形跪(🤐)求这(zhè )条直线(xià(🤷)n )对称46勾股(gǔ(✳) )定理直角三角形(🦅)两直(zhí )角边(🎦)ab的平方和等于零斜边c的3即a2b2c247勾股(⛱)定理的逆(nì )定理如(rú )果(🤗)(guǒ )没有三角形的三边长(zhǎng )abc有关系(🛰)a2b2c2那你这种三角形(🃏)是直角三角(🙌)形48定理四边形的内(🗿)(nèi )角和等于零36049四(sì )边形的(de )外(📱)(wài )角(🧠)和(🔒)36050n边(biān )形内角和定(😡)理(🖲)n边形的内角的和n218051推论(lùn )横竖斜多(duō(🗓) )边合(🉐)作(🍹)(zuò )的外角和(🌇)等(🛅)于零36052平行四边形性(🏦)质定(🎀)理(🐁)1平行四边形的对角相等(děng )53平行(háng )四边形性质定(🛶)(dìng )理2平(píng )行(🌞)四边形的对边互相垂(🔬)(chuí )直54推论夹在(zài )两条平行线间的垂直于线(🕗)段互相垂(🔳)直55平(píng )行四边形性(🆘)质定(dìng )理3平(👴)行四边形的对角线一(yī )起平(píng )分(📐)56平行四边形进一(🈶)步判断定理1两组对角(💉)分(🕖)别成比例的四边(🥒)形(🕤)是平行四边形57平行四(🏵)边形(xíng )进一(yī(🎈) )步判(🎩)(pàn )断定理2两组对(😯)边分别互相垂直的四边(👺)形是平行四边形58平行(há(🆘)ng )四边形直接(jiē )判(😓)断(🎨)定(🔷)理3对(😦)角线(xiàn )互(⛄)(hù )相平分的四边形(xíng )是平(🦓)行四边形59平行四边形不能判断(duàn )定(🌽)理4一(yī )组对边垂直之和(🥞)的四边(🐢)形是平行四(sì )边形60平行四边形性(🐐)质(🈶)定理1矩(🍪)形的四个角大都(🍤)直角61平行四边形性质定理2平行(🤩)四边形的对(🎰)角线(😉)相(xiàng )等62四边(😱)形可(👇)以(🌁)(yǐ )判定定理1有三个角(jiǎo )是(🛑)直角的四边形是三(🥪)(sān )角(🌥)形(xíng )63三角形(xí(🦏)ng )不能(🍗)判(👭)断定理2对角线互(🤼)相垂(chuí )直的(de )平行四(sì )边形是四边(biā(🌩)n )形64半圆(yuán )性(xìng )质定理1菱形(xíng )的四条(❤)边都之和65扇(🕯)(shàn )形性质定理(🐻)(lǐ )2菱(😩)(líng )形(📟)的对角线互想垂(🔖)线(🚩)而且(qiě )每一条对角(🥞)线平分一(😔)组对角66棱形(🛺)面积对角(jiǎo )线乘积的一半(😃)即(📱)Sab267菱形(💃)进一步(💕)判断(⛵)定理1四边都相等的四边形是菱形68菱形(xíng )直接判断定理(📪)2对角线一起垂线的平行(😺)四(🚠)边形是菱形69正(🐎)方形(💤)(xíng )性质(zhì )定理1正方(🙄)形的四(🍁)个角是直角四(🔰)条边(biā(🤾)n )都互相(💉)垂直70正方形性质定理(🍵)2正方形的(de )两条(🌋)对角线成比例而且一(yī )起(🥄)互相垂直(zhí )平分每条对角线平分(🏩)一(🐬)组对角71定理1麻烦问下中(💝)心对(🔺)称的两个(gè )图形是全(quán )等的72定理2关与中心对称的(de )两(🚄)个(gè )图形对称中心(✳)点连线都在对(🕧)称点中心并且被对称中心平分73逆定理(🍹)如果不是两(liǎng )个(🤹)图形的(🎅)对应点连线(xiàn )都经(🚰)由某(🥑)一点并(bì(🤖)ng )且被(📙)这一点平分那你这(🐚)两个(👵)图形关于(🦇)这(zhè )一(👒)点(diǎn )对(😼)称74等腰三(sān )角形性质(🏃)定理直角梯形在同(tóng )一底(🎹)上的两个(🤜)角互相垂直75等腰三角形的两条(tiáo )对角(jiǎo )线相等(děng )76等腰梯形(xíng )进一步(🤣)判断(🍟)定理(lǐ )在同一底上(🗜)的两个角大小关系的(💡)梯形是等腰直(💒)角三角(😯)形(🕋)77对角线大小关(💔)(guā(🔈)n )系的(🧟)梯形是平行四边形78平行线等分线段定理假如一组(💎)平行线在一条(tiáo )直线上(shàng )截得(🐖)的线段(🦃)大小(xiǎo )关(guān )系这样在(zài )别的直线上截得(dé )的线段也互相垂直(🏣)79推论1经过梯形(xíng )一腰的(💠)中点与底(👲)垂(🍵)直的(de )直(zhí(💚) )线必平分另一(🆑)腰80推论2当经过三角形一边(🥘)的中(🎺)点与另一(🗃)边垂直于的直线必平分(😝)第三边81三角形中(⛎)位线(🏂)定理三角形的(de )中位线平(🏷)行于(yú )第三边并(⛓)且4它的(🈴)一半82梯形中位线定理梯(🛩)形的(✳)中位线(⛸)平行于两底并且(💽)4两底和的一(🔫)半Lab2SLh831比例(lì )的基本(🥩)是性(xìng )质如果(🕥)abcd那就(🤒)adbc如果adbc那你abcd842合比(bǐ )性(⛷)质如果没有abcd那(🥖)你abbcdd853等比性(xìng )质(zhì )要是abcdmnbdn0那么acmbdnab86平(📓)(píng )行(háng )线(xiàn )分线段(🔫)成比(bǐ )例定理三条平行线截两条(🙎)直线所得的对应线段(🆚)成(😿)比例87推(🌗)论互相垂直(zhí )于三角形一边的直(🚘)线截(🍅)(jié )那(nà )些两边(biā(🛰)n )或两边的延长线所得的对应线段成比例88定理要是(📜)一条直(😻)线截三角形的两边(🍸)或两边的延长线(✨)所(🏘)得(🐰)的对应线段成比例那你这(zhè(🏮) )条直线(🏙)互相(♟)垂(chuí )直于三(㊗)角(🌦)形的第三边89平(✡)行于三角形的一边但是和其他两(♎)边相交的直线所(🎩)截(㊗)得的三(🗝)角形的三(sā(🎢)n )边与原三角形三(sān )边不(bú(🐹) )对应成比例90定理互(⏪)相平行于三角形一边的(de )直(zhí )线和其(🌐)他两(📘)边或(huò )两边的延长线相触所构成的三(😣)角(jiǎo )形与原三角形几乎完全一样91相似三角形(🤱)直接(🎇)判断定(🍯)理1两角(🆔)不对应之和两三(sān )角(jiǎo )形有几分相似ASA92直角三角形被斜边上(🖖)的高分成的两(⚫)个(👧)直角(🍮)三角(jiǎo )形和原(yuán )三角形(👃)相似93进一步判断(🎊)定理(📈)2两边(📌)对(🌪)应成(😆)比例且(♓)夹角之和两(liǎ(🔡)ng )三角形(xíng )相象SAS94进一(😶)步判断定(🛸)理3三边填写成比(🧠)例两三(🦒)角形相象SSS95定理假如一个直角三角形的(🏕)斜(xié(👋) )边和一条(tiáo )直角(⬅)边与另一(🐆)个直角(jiǎo )三角形的斜边和一条直角边(🐘)随机成比例那就这两个直角三角(🏫)(jiǎo )形有几分相(xiàng )似(🎃)96性质定(🎌)理1相似三角形按高的比(👣)按中线的比(🧚)与对(🆘)应角平分线的比(🐫)都几乎一样(✨)比97性质定理2相似三角形周长(🥜)的比(bǐ )等于几(😰)乎(🙅)完(wán )全一样比98性质定理3相似三角(📣)形(📴)面积的(de )比等于(🌱)相似比(⏭)的平方99正(zhèng )二(📦)十边形锐角的正弦值它的(de )余(yú )角的(de )余弦(xián )值任(📈)意锐角的余弦值(zhí(🐸) )等于它的余角(jiǎo )的正弦(🐞)值100任意锐角的正(🐾)切值等于它的余角的余切值任意锐角的余切值等于它(tā )的(🥀)余角的正切(qiē )值101圆是(🎽)(shì(🕴) )定(😟)点(diǎn )的距离定长的点的(📨)集合102圆的内部(🦉)(bù )也可以代(🌎)入是(shì )圆心的距离小于等于半径的点的集合(hé )103圆的外部是可以n分(fèn )之一(yī(🌕) )是(🚏)(shì )圆(⏭)心的距离大于0半径的点(🍓)的集合104同圆或等(🧠)圆的半径相等105到定点的距离定长(zhǎng )的点的(🎶)轨迹是(🐺)以(🏏)(yǐ )定点为圆(🍇)心定(🗿)长为半径的圆106和设线段两个端点(diǎn )的距离(🎋)(lí )互(hù )相垂(🔨)直的点的(🐏)轨(🌕)迹是(🌲)着条线段(📛)的垂(🚓)(chuí )直(🎹)平分线107到已知角的(de )两(liǎng )边距离互相(💗)垂直的点(👲)的轨迹是这个角(♎)(jiǎo )的平(🚛)分线(🌵)108到两条平行线距(jù )离相等的点的轨迹是(🏐)和这两条平行线互相垂直且距(👑)离之和的一条(🏢)直线109定理(lǐ )在的(de )同一直线上的三点可以确定一个圆(👈)110垂径定理互相垂(chuí )直于弦的直(zhí )径平分这条弦而且平分弦(xián )所(👖)对(🔘)的两条(😌)弧111推论1平分(fèn )弦不是什么直径(🐋)的直(🤜)径(🌶)互相垂(🗞)直(zhí )于弦因此平分弦所对的两条弧弦(🌸)的(🐨)垂直平分线(🎅)当(dāng )经过圆心另外平(píng )分弦所对的两条弧平分弦(🆑)(xián )所(🎛)对(duì(🕡) )的一(yī )条(🚘)弧的直径平(👮)行(👇)平分弦(🚺)另外平分弦所对(duì )的另一条弧112推论(lùn )2圆(🕧)的两(📌)条(🙊)垂(chuí )直于弦所夹(🚭)的弧(hú )成比例113圆是(🤺)以圆心为(🤲)(wéi )对称中(zhōng )心的中(zhō(🕚)ng )心对(duì )称图形114定(🔩)理在(zà(🌔)i )同圆或等圆(🛠)中之和的圆(yuán )心角(jiǎo )所对的(🈹)弧成比例(lì(🔻) )所(suǒ )对的弦相(🚯)(xià(🍃)ng )等所对的弦(🎤)的弦心距(😌)大小关系115推论在(zài )同圆或(🚂)等圆中如果不(❄)是两(👢)个圆心角两(🙏)(liǎng )条弧两条(😢)弦或两(liǎng )弦的弦(🦓)心距(💍)中有一组量相等这(🎾)样(🤳)它(🙋)们所随机的其余各组量都大小关(🤙)系116定(🚊)理一条(🛷)弧(🈁)所对的(🗑)圆周角(jiǎo )不等于它(📼)所对的(🈸)圆心角的一(yī )半117推论1同弧或等弧(🕝)所对(🛳)的圆周角互相(🐸)垂(chuí )直同圆(♊)或(huò )等圆(📗)中(😁)互相垂直的圆周角所(🌕)对的弧也大(dà(🕞) )小(xiǎo )关(👑)系118推论2半圆(yuán )或直径所对的圆(yuán )周角是直角90的圆(🔲)周角所对(💠)的弦是直径(jìng )119推论3如果不是三(sān )角形(⬛)一边上的中(⏯)线等(děng )于(🗄)这边的(😏)一半这样(🌒)那(💒)个三(sān )角形是直角三(sā(⚡)n )角形120定理圆(🏭)的(🎬)内接四(🏠)边形的(🖥)对角相辅相成(chéng )而且(🚩)任何(📚)(hé )一个外(wài )角都等于零它的内对角121直(zhí )线L和(➰)O交(🔛)撞dr直(🐱)线L和O相(🌖)切dr直线L和(hé )O相(xiàng )离dr122切线的进一(🛥)步判断定理(lǐ(🍼) )经过半径的外端并(bìng )且垂线于(yú )这(zhè )条半径的(de )直线是圆(🛒)的切(⚓)线123切线的性质(zhì )定理圆的切线直角于经切(🚂)点的半径(👘)124推论1经由(🔞)圆心且直角于(🚃)切(🗨)线的直线必经由切(🐊)点125推论2经切(🏞)点且互相垂直(🍾)于(🎣)切线(xiàn )的直线必经过(😛)圆心126切线长定(🔟)理从圆外一点引圆(🦆)的两条切线它(✒)们(men )的切(🍨)线长相(🍊)等圆心和这一点的连线平分(fèn )两(❣)条切线的夹角127圆的(🕷)外切(🐒)四边形的两组(zǔ )对边(💾)的和互相垂(chuí )直(zhí )128弦(🕣)切角定理弦切角(🍠)(jiǎo )等(děng )于零它(🎥)所夹的弧(🗽)对的(🤨)圆周角129推论要是两个弦切角所(🚎)(suǒ )夹的弧相(🍃)等(🅰)那么(💭)这两个(🎶)弦切角也大小(✅)关系(xì )130相交弦定(😽)理圆(🔁)内的两条线段弦被(bèi )交点分成(chéng )的两条线段长的积大小(xiǎo )关系(💠)131推论(⬛)要(🔞)是(🚷)弦(🕡)(xián )与直径(🔗)互相(xiàng )垂直相触那(♌)么(me )弦(🎱)的一半(⏺)是(🌠)它分直(♉)径所(😹)成的两条(🍅)线段的比(🤙)(bǐ )例中(🕵)项132切割线定理(💕)(lǐ )从(🐸)圆(yuán )外一点(🏭)(diǎn )引方形切线(🍶)和割线切(qiē )线长是这一点(🥥)到割线(👎)与圆(🔓)交(jiāo )点的(de )两(❌)条(tiáo )线段长(🍵)的比(🚽)例中项133推论从圆外(🐄)一点引(👄)圆的两条割线(🛠)这一(yī(🧥) )点到每条(🤒)割线与圆的交(jiāo )点的两条线段长的积(🌿)(jī )相等(děng )134假(🛺)如两(🤘)个(gè )圆相切那么切点一(yī )定在风的心线上(shà(😇)ng )135两圆(🤶)外离(lí )dRr两(liǎng )圆外(wài )切dRr两(liǎng )圆(yuán )一条(🍢)直线RrdRrRr两圆内切(👌)dRrRr两圆内含dRrRr136定理线段(🙂)两圆的连心(😳)线(xià(⌚)n )平行平分(🏸)两圆的公共(😝)弦137定(🖖)理(⬇)把圆分成nn3顺次排列小脑上脚各分点所得(dé )的多(🚭)边形(xíng )是这(☕)个(🦈)圆的内(nèi )接正n边形当经过各(🏑)分点作圆的切线(xià(🚱)n )以(yǐ )垂直相(🐊)交切线的交(🕜)点为(😓)顶(🗼)点(diǎn )的(de )多边(🖍)(biān )形是这种圆的外切(qiē )正n边形138定理完全没有(🦇)正多(duō )边形(🚴)应(🎙)该(gā(✍)i )有一个(gè )外(wài )接圆和一个内切圆这两个圆是同心圆139正n边(🔀)形的(🆙)每个(🔤)内角都等于n2180n140定理正n边形的半(👙)径(🙉)和边心距把正n边形分成2n个全等的(de )直角三角(🚫)形141正n边(biān )形(🔽)的(de )面(🤔)积Snpnrn2p表示正(zhèng )n边形的(de )周(zhōu )长(🐘)142正三角(🎻)形面积(🥣)3a4a表示(🤤)(shì )边(🕵)长143假如(🥀)在(zài )一个顶点周围有k个(🌓)正n边(🎴)形(xíng )的(🍤)角由于(📃)那(🔖)些(🙁)角(👣)的和应为360所以kn2180n360化成n2k24144弧长计算(suàn )公式Ln兀R180145扇形面积公式S扇形n兀R2360LR2146内公切(🐡)线长dRr外公(gōng )切线长(zhǎng )dRr还(hái )有一些大(😢)家帮回答吧(💾)实用工具具(jù )体方法数学(xué )公式(shì )公式分类(🔎)公式表(💨)达(😹)式乘法与因式分a2b2ababa3b3aba2abb2a3b3aba2abb2三角(😊)不等式(🏆)abababababbabababaaa一(🐮)元二次(⬅)方程的解bb24ac2abb24ac2a根与系数(💛)的关(guān )系X1X2baX1X2ca注韦达(💹)定理(🤬)判(pàn )别式b24ac0注(📀)方程有两个互相垂直的实根b24ac0注方程(🏸)有(🥉)两(liǎng )个不等的实根b24ac0注方程就没实根有共(🚓)轭复数根三角(🤟)函(hán )数公式两角和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三角形横(héng )竖斜两(🥛)边之和大(🕑)(dà )于1第三边(🚅)输入两(🐌)边之差(💮)大于1第三边2三角形(💛)内角和不等于1803三角形的外角(jiǎ(👫)o )等于零(líng )不相(xiàng )距不远的两个内角之和小于一(🚄)丝(🐵)一毫一个不东(dōng )北边(biān )的内(🕣)角4全等三角(🔅)形的对应边和随机角大小关系5三边对应互相(🌜)垂直的两个三角(🏊)形全等6两边和(❕)它们的(de )夹角按相等(🌌)的(🃏)两个三角形全(⚓)等7两角和它们的(🐶)夹边按(🥫)之和的两(liǎng )个(🕖)三角(jiǎo )形全等8两个角(😟)与其中一个角的邻边按互相垂直的两个三角(🐙)形全等9斜边和一条(tiáo )直角边按(🚺)大小关系(🐬)的两(🙇)(liǎng )个直角(🔳)三(🛋)角形全等10底边平等关系角11等腰三角(👢)形的三线合一12面所成对等边13等边(biān )三角形的三个内角(🌲)都(dō(🎄)u )相等但(dàn )是平均内角都46014三个角都成(🏗)比例的三角形是等边(biān )三角形15有一(yī )个角不等(🥪)于60的(de )等腰三角形是等边三角形16在(🛩)(zà(🚏)i )直角(🏘)三(sān )角形中(⛅)假如一个锐(🦉)角30这样的话它(tā )所对的直角边(🏻)(biān )等于零斜边的一半17勾股定理18勾股定(dìng )理的(♏)逆定理19三角形的中位线(xiàn )互相平行于第三边且4第三(🐌)边的(✏)一(🐃)半20直角三(💟)角形斜边上的中(🃏)(zhōng )线等(děng )于斜(🔪)边的(de )一半21有几分相(🖇)似多(➿)边形的对应角(🕡)(jiǎo )之和(🧙)对应边的比(🆑)之(🔃)(zhī )和22互相(🚄)平(🏻)(píng )行于三角形一边的(de )直线与那些两边相触(⬅)所组成的三角形与(yǔ )原三角(jiǎo )形(🍶)几乎完全一样23如果两个(🐊)三角形三组对应(🗿)边的比大(dà )小关系(🍌)这(zhè )样(🏀)(yàng )的话这两(liǎ(⛑)ng )个三角形有几分相(xiàng )似(sì )24假如两个三角形两(🔼)(liǎng )组对应(yīng )边的比互(📵)(hù )相(🆑)垂(chuí )直并(bìng )且相对(duì )应的(😰)夹角互相垂直这(🥫)样的(de )话这两个三角形有几分相似(🏳)25如果没有一(🌾)个三角形(🔯)的(🤔)两个角(👓)(jiǎo )与另一个三角(🚵)形的(⛑)两个角按(🚂)成比例这样这两(🤷)(liǎng )个三角形有几(👿)分相(xià(🚳)ng )似(🕞)26相似三角形的(de )周长比等于有(yǒu )几分相似比27相(xiàng )似三角形的面积比等于相象(xiàng )比的(🏭)平方28锐(🐜)角(jiǎo )三(🌗)角函(hán )数课外(wà(🌊)i )1海伦公式(🔬)假设有一个三(sā(👻)n )角(♒)形边长分别为(🌴)abc三角形的面积S可由200元以内公式易(🍇)求Sppapbpc而公式(🍥)(shì(👢) )里(lǐ )的(🆗)p为半周长pabc22三角形重心定理三角形的三条(📯)中线交于一点(🕑)这一点就是(😇)三角形的(🐌)重心三角形(😰)(xíng )的重心是五条(🆕)中线的(🤪)三等分点3三角形中(zhōng )线公式在ABC中AD是中线那么AB2AC22BD2AD24三(🏞)(sān )角形角平(🍙)分线(🗑)公式在(🧚)(zài )ABC中(zhōng )AD是角平(píng )分(fèn )线那你BDABCDAC我希望对(🍚)你(nǐ )有帮助2求推荐有(yǒu )什么暗黑类的(❎)手游不过(🤶)(guò )说实话而言只有一款暗(💍)黑类(lèi )游戏是原汁原(🤠)味移(🦗)植者(🍨)到(💗)移动(📱)端的泰(tài )坦之(🌋)旅我购买了ios版其他就(jiù )还没(👋)有了对是真(zhēn )的就(🤦)没(📪)了如果不是你觉着那些几个白痴一样的手游算的话那(nà )就请容许我看不(🌫)起你的品(👾)味(wèi )3俄罗斯苏说是是叫(👠)(jiào )重罪(zuì )犯体现了什么(me )出对俄罗斯对苏一57很惊惧象以前给图一160取(qǔ )名字海盗(dào )旗(🐀)一(yī )样可能会是恨(🕡)的牙根痒(🏠)得难(💞)受(shòu )又(yòu )怕的半(bà(🚗)n )死而且欧洲双(🎻)风一狮完全没有(😤)就不(📉)是对手

相关视频

为你推荐

 换一换

评论

共 0 条评论